On the Role of Jacobians in Robust Manipulation

Joshua T. Grace', Podshara Chanrungmaneekul?, Kaiyu Hang?, and Aaron M. Dollar

Abstract— Traditional robot control relies on analytical meth-
ods that require precise system models, which are hard to
apply in real-world settings and limit generalization to arbitrary
tasks. However, systems like serial manipulators and passively
adaptive hands feature inherently stable regions without control
discontinuities like loss of contact or singularities. In these re-
gions, approximate controllers focusing on the correct direction
of motion enable successful coarse manipulation. When coupled
with a rough estimation of the motion magnitude, precision
manipulation is achieved. Leveraging this insight, we introduce
a novel inverse Jacobian estimation method that independently
estimates the primary motion direction and magnitude of the
manipulator’s actuators. Our method efficiently estimates the
direct mapping from task to actuator space with no need
for a priori system knowledge enabling the same framework
to control both hands and arms without compromising task
performance. We present a novel control method with no a
priori knowledge for precision manipulation. Experiments on
the Yale Model O hand, Yale Stewart Hand, and a URSe
arm demonstrate that the inverse Jacobians estimated via our
approach enable real-time control with submillimeter precision
in manipulation tasks. These results highlight that online self-
ID data alone is sufficient for precise real-world manipulation.

I. INTRODUCTION

Manipulation is vital for a range of real-world tasks,
including assembling puzzles, buttoning shirts, and screwing
on bottle caps. Achieving these tasks requires a combina-
tion of arm-based manipulation for large-scale movements
and dexterous in-hand manipulation for precision alignment.
Dexterous in-hand manipulation, often called Within Hand
Manipulation or WiHM, is defined as the capability to
reposition or reorient an object within a grasp using a set of
finger contacts regulated by the finger joints [1]. In this work,
we consider controlling WiHM and arm-based systems.

WiHM is generally used for precise control tasks where
an object is manipulated in a constrained region. Traditional
WiHM approaches use fully actuated hands, which may
lose their grasp with small motor perturbations so require
complex control. Passively adaptive hands leverage mechan-
ical compliance to enable a region of stability in which
the grasp is robust over a range of movements [2], [3].
These stable regions enable simple models to effectively
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Fig. 1: Inverse Jacobians estimated with no a priori knowledge.
Data from random motions used to estimate separate signed and
magnitude inverse Jacobian. Matrices combined and finetuned to
enable precision manipulation

perform precision manipulation tasks [4]. We also consider
manipulation with robot arms which enable coarse control
over a larger region of task space. Like passively adaptive
mechanisms, robot arms with closed-loop controllers moving
in free space outside singularities exhibit similar robustness
to error [5]. As WiHM presents a greater control problem
than serial manipulation, we focus on the problem’s WiHM
formulation, but the same principles extend to both cases.

In both WiHM and arm manipulation, a priori knowl-
edge requirements can be challenging. A priori information
can include kinematic models, object characteristics, contact
points, and eye-hand calibration. These parameters require
human intervention to determine and prevent generalization
to arbitrary tasks or environments. So, we aim to eliminate
the need for this information in the controller. A more
practical approach is to directly estimate these parameters
online and instantiate a controller from the estimation.

We perform this parameter estimation using Self-
Identification (self-ID) [6], described in Section III-A. In-
stead of requiring explicit knowledge of a robot’s kine-
matics, these values are learned via interactions with the
environment. It enables a robot to reason about its actions
in the real world and update the internal kinematic model
by observing the results. Unlike previous self-ID approaches
which use models requiring a priori knowledge, we estimate
the controller fully online. We focus on self-identifying the
inverse Jacobian of a manipulator, a direct mapping from
task to actuator space.

This work leverages self-ID to estimate 3D precision
manipulation models for hands and arms without a priori
knowledge other than the number of actuators and a safe
actuation magnitude. As shown in Fig. 1, we introduce



a novel framework for inverse Jacobians in manipulation,
splitting them into a signed inverse Jacobian, which focuses
on the primary direction of motion, and the magnitude
inverse Jacobian, which focuses on the amount of motion.
This enables a simpler estimation framework and eliminates
the reliance on prior information.

II. RELATED WORK
A. Approximate Jacobians for Control

Jacobian-based control is a popular method for general
manipulation. Prior work has shown stable Jacobian-based
control for robot arms with kinematic uncertainty [5]. In
continuum robot control, Jacobians have been estimated with
Kalman filters [7], or using optimization to account for
external obstacles [8]. Similarly, Jacobian estimation has
been applied to soft objects to move them to a desired shape
[9]. However, none of these methods extend to WiHM.

Applying Jacobian-based control to robot hands introduces
challenges due to the need for a stable grasp. An adaptive
Jacobian controller has been derived which handles uncertain
contact location, hand kinematics, and object morphology
[10]. Similarly, a Jacobian estimation process using neural
networks has been proposed under the same constraints [11].
However, both methods are demonstrated only in simulation.

Recent work estimates the Jacobian of a soft compliant
hand to repeat operator demonstrated object movements [12].
But, this approach only reproduces observed motion and
does not perform generalizable precision manipulation. Our
previous work demonstrated precision WiHM using inverse
Jacobians estimated via a particle filter for a passively
adaptive underactuated hand [13]. But, that method requires
an a priori distribution of feasible inverse Jacobians, which
limits the control frame and generalization to other hands. In
contrast, this work achieves full 3D precision manipulation
only using self-ID data without a priori knowledge.

B. Learning-Based Manipulation

Learning-based approaches have become a popular method
of controlling robot hands. Initial work demonstrated learned
dexterous manipulation in simulation environments [14]. Do-
main randomization allowed simulation training to generalize
to the real world for cube rotation [15], and enhanced
domain randomization enabled solving Rubik’s cube in hand
[16]. Recent works have shown learned models performing
object rotation, including z-axis rotation with depth camera
images for a wide range of objects [17], arbitrary axis
rotation using touch and proprioceptive information [18], and
extreme aspect ratio objects rotation [19]. Precision WiHM
on passively adaptive underactuated hands has also been
shown with learned state transition models [20].

While these methods do not require explicit knowledge
of the underlying system kinematics or dynamics, they are
implicitly embedded in the model. System priors are en-
coded in the large parameter spaces of learned model which
require significant data and are prone to overfitting. So,
these methods struggle with generalization and often have
slow control frequencies. Unlike learning-based methods, we

estimate a control with no a priori knowledge using simple
computational techniques enabling efficient, precise control.

C. Control Methods for Passively Adaptive Hands

The grasp stability of passively adaptive hands allows
simple control methods to be highly capable. 2D WiHM has
been demonstrated using predefined hand motion sets [21],
Gaussian Process Models trained on real-world data [20], and
Gaussian Process Regression from self-ID data [22]. While
sufficient for planar hands performing 2D manipulation,
these methods are not demonstrated on 3D tasks which are
more difficult given the additional degrees of freedom and
control requirements for non-planar hands.

3D WiHM has been shown using a Random Forest re-
gressor predicting required actuation velocity with MPC [23],
using a particle filter to estimate the kinematic parameters of
the hand [6], [24], and a particle filter predicting the inverse
Jacobian [13]. These methods require a priori knowledge of
the hand, reducing their generality. In contrast to these ap-
proaches, this method performs precision 3D control without
a priori system knowledge. Leveraging online self-ID, the
region of valid inverse Jacobians, and our novel estimation
method, we show precise WiHM and generalization to a
range of systems without modifying the estimator.

III. PRELIMINARIES AND PROBLEM FORMULATION
A. Self-Identification

Self-Identification (self-ID) is a process in which robots
gather information about the world through their actions and
update their internal model to improve task performance over
time. The process assumes that the manipulator has accurate
motor position tracking and a system to track end-effector
pose in the desired task space. At each self-ID iteration, a
maximum motor movement m, which maintains the grasp
or system safety is used to randomly sample an actuation
00, for the n actuators on the manipulator according to
00, = uniform(—mg,m,). The state of the system before
actuation s,_; and after actuation s; is sampled and used to
calculate ds;. The model parameters are updated to reflect the
new actuation-effect sample (86;,0s;), refining the system
estimate. Initially, self-ID runs until the model converges to
a useful controller. The system then executes the desired task
while continuing estimation refinement.

B. Inverse Jacobians

Using self-ID, we aim to estimate the manipulation sys-
tem’s inverse Jacobian. In particular, we find the inverse Ja-
cobian mapping the twist of some point on the end effector to
the manipulator’s actuators. Many manipulation tasks focus
on controlling a specific point on an object or manipulator,
like the tip of a screwdriver. We define this point as the
Point of Manipulation (POM), y, which combined with the
motor positions defines the system state. In WiHM, y is a
point on the object, kinematically linked to the manipulator
through the joints, links, and fingertip contacts. For arm-
based manipulation, ¥ is a point on the end-effector.



The Jacobian J(8) of a system maps joint velocities 6 to
the spatial twist V of the end effector in task space as in
Equation 1 [25]. The Jacobian controlling V in frame ¢ with
transformation 7' from the Jacobian frame origin is denoted
J;(0). It is transformed from J(60) using the adjoint [A;7] in
Equation 2 allowing control in arbitrary frames. The twist of
x in the POM frame X can then be found using Equations 3,
4. We aim to identify the inverse Jacobian J,/ 1(9) mapping
from the desired POM twist to the required joint velocities
as in Equation 5. In practice, the inverse Jacobian may be
non-square and is approximated via the pseudoinverse J; (6).
Once J; (0) is found, it can directly control the system.

Ji(0) =[Aar]J(6) (2)

Vi=Jx(6)6 4)

V=J(0)6 )
Ty (0) = [Aax]J(6)  (3)
6=7,"0)V, (5

For serial manipulators, J*(6) is found by computing J(0)
from forward kinematics and inverting the matrix. For paral-
lel mechanisms like robot hands, J~!'(8) is computed directly
from the inverse kinematics. We define the J; (6) using x,
y, z position, and the exponential form of rotations. To find
J; (0), the transformation matrix of the reference frame is
combined with the grasp and object information to compute
the adjoint transform. However, this process assumes that
both the grasped object and manipulator kinematics are fully
known and are constant during manipulation, assumptions
that rarely apply in the real world. Relying on a priori object
or kinematic models limits manipulation to known objects
reducing generality. Instead, we estimate the inverse Jacobian
directly using online data gathered from self-ID. This enables
generalization to a range of objects and manipulators.

C. Valid Inverse Jacobian Space

An important consideration when estimating the inverse
Jacobian for manipulation is determining the required esti-
mate accuracy for successful manipulation. Thus, we analyze
how sensitive the inverse Jacobian is to error by evaluating
how much the true inverse Jacobian elements can be per-
turbed while maintaining task performance.

Since the range of each element can vary significantly, we
introduce perturbations by scaling the values by some factor
€. We evaluate robustness with the path completion propor-
tion and the mean tracking error under different scalings.
For a given maximum error scaling &;,;;, a scaling matrix
meg is generated at the start of each test, where each element
is sampled independently with mg, ; ~ uniform(1, &;,;) At
each step, the inverse Jacobian of the system is scaled
element-wise with J; (0) = mgoJ*(0). Analyzing the path
following performance with J; (0) shows the robustness of
inverse Jacobian estimation errors, dictating how accurate the
estimate must be for successful control.

We first analyze a two-link arm, with link lengths of 1,
following a star path with the end effector. We sample 10
representative arm configurations away from singularities,
and perform 10 tests per configuration, resampling m, for
each test to gain representative statistics. We define the
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Fig. 2: Valid regions where incorrect inverse Jacobians maintain
control. Valid regions (marked by matching vertical lines) have high
path completion and low tracking error

valid region as the contiguous region where the mean path
completion percent exceeds 95%. So, any inverse Jacobian
in this region likely enables successful control. As seen in
Fig. 2, the inverse Jacobian of the arm remains valid between
0.33x and 1.67x the true inverse Jacobian element values.

We repeat this evaluation in kinematic simulations of the
Yale Model O hand [3], Yale Steward Hand [26], and a URSe
arm. As shown in Fig. 2, the valid inverse Jacobian range is
0.33x to 1.88x for the URS5e, 0.22x to 1.78x for the Model
O, and 0.12x and 2.09x for the Stewart Hand. Overall, we
find a consistent region of valid inverse Jacobians across the
studied systems, showing that control remains robust despite
numerical variation. Therefore, the control problem is robust
to model error and self-ID estimates only need to fall within
this range for successful control.

D. Signed Inverse Jacobian

We introduce the signed inverse Jacobian, a matrix which
describes each actuator’s primary direction of motion in task
space. In our prior work [13], we estimated the inverse
Jacobian using a prior distribution computed in the frame of
the in-palm camera. However, when controlling the system
in other reference frames, the estimator consistently diverged
leading to control failure. We found that significant rotations
of the control frame relative to the inverse Jacobian dis-
tribution prevents successful estimation. We observed that
while the absolute values of the parameters were often in
distribution, the sign flips that occur during larger rotations
caused the values to fall outside the prior distribution of the
particle filter. Intuitively, when a parameter sign is wrong,
the actuator moves the opposite direction of the intended
motion, compounding over time and destabilizing the system.
Additionally, when the sign of the estimated and true inverse
Jacobian diverge for a given element, the scaling is negative
and thus outside the stable distributions in Section III-C.

To address this challenge, we propose separating the in-
verse Jacobian estimation problem into two stages. First, we
estimate the element signs of the inverse Jacobian, followed



= {— 5] - +]

v [04 1] . _ [0:005 0.0568
¢7[-0.1] T T 0.085  0.852
s+ _[100 10
Y me = 1500 150

Fig. 3: One step of Sign and Magnitude Inverse Jacobian Estima-
tion; 1. Sample actuation § and pose change V; 2. Compute sign
matrix Ji from 6; and V; signs and sign weights wy, from 6; and
V; magnitude; 3. Compute magnitude matrix from 6; and V; ratio

by a separate estimation of the element magnitudes. We
define the matrix of element signs as the signed inverse Ja-
cobian, and the matrix of magnitudes the magnitude inverse
Jacobian. The signed inverse Jacobian essentially captures
the primary direction that each actuator moves to achieve
a desired change in pose along a given axis, while the
magnitude inverse Jacobian determines how far an actuator
needs to move to achieve a desired magnitude of motion.
This separation allows the estimator to treat sign estimation
as a discrete classification problem, enabling more robust and
precise estimation, while allowing coarser approximation of
the magnitudes. We find that this estimation method signifi-
cantly improves sample efficiency and enables precision ma-
nipulation. We introduce a weight-based classifier to find the
signed inverse Jacobian, and compute the magnitude inverse
Jacobian from the ratio between actuation and movement.

IV. ESTIMATION OF MANIPULATION MODELS

Inverse Jacobian-based control is a powerful method for
WiHM, but its real-world use is limited by dependence on
accurate system models. We propose a method for estimating
the inverse Jacobian without a priori knowledge, enabling
manipulation across unfamiliar objects and different manip-
ulators. Moving actuators independently to find the partial
derivatives to form the inverse Jacobian is a straightforward
approach, but does not generalize to movements of multiple
actuators, preventing updates online. Inverse Jacobian esti-
mation with arbitrary movements is difficult because multiple
actuators contribute to motion, so the influence of individual
actuators is ambiguous. Direct optimization of the inverse
Jacobian from self-ID data is unreliable for some systems as
the non-convexity of the inverse Jacobian space causes the
estimate to get stuck at invalid local minima. So, a better
method is needed to estimate system inverse Jacobians from
any combination of actuations.

To estimate the inverse Jacobian, we decompose the prob-
lem into two parts: the direction each actuator needs to move

for some Vj, and the corresponding movement magnitude,
as shown in Fig 3. The signed inverse Jacobian matrix J;
represents the primary motion direction of each actuator, with
element values +1 estimated via a weight-based approach.
The magnitude inverse Jacobian is found with the mean ratio
of actuator displacement and resulting V), capturing the rough
scale of the joint to task space relation. Both matrices are
estimated from the same self-ID data, yielding a structured
interpretation of the random self-ID data. These matrices are
combined elementwise to generate an initial hypothesis of
the inverse Jacobian. This estimate is then refined through
optimization to estimate J; (6) as shown in Algorithm 1.

A. Signed Inverse Jacobian

The signed inverse Jacobian J; determines the primary
direction of motion of each actuator on each component of
V). During manipulation, interactions between actuators and
sensing noise complicate determining the exact relation be-
tween actuator inputs and task space movement. To address
this complexity, we adopt a weight-based estimation system
that accounts for these challenges.

For each actuation-observation pair, we compute the sign
of the matrix element s;; with Equation 6. We then compute
the weight of each actuator’s contribution to the overall
motion with Equation 7, assigning higher weights to actu-
ators with larger relative movement. Similarly, Equation 8
determines the relative weight of the resulting pose change
to account for different magnitudes of motion across axes.
At each self-ID iteration, the sign weights for +1, s;;, and
-1, s;;_ are updated according to Equation 9. The final sign
of each matrix element is given by the highest weighted sign
as detailed in Equation 10.
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A single step of the signed inverse Jacobian estimation
process is illustrated in Fig. 3. While V, and 6; have smaller
values, V, and 6, are larger. So, the weight of the +1 relation
between actuator 2 and the Y axis, w;,, should reflect the
large input and corresponding output. Conversely, the weight
of +1 for actuator 1 and the X axis should remain relatively
small. As more self-ID samples are gathered, the weights
will be refined until convergence is reached.

sij = max(sij, ,Sij_)

B. Magnitude Inverse Jacobian

The magnitude inverse Jacobian J,; approximates how far
an actuator needs to move for a given V, displacment. It
is computed as the mean magnitude of all movements. The
magnitude of a given element at time ¢ is given by Equation
11. The final magnitude estimate is the mean of all samples
for a given actuator, pose element pair, as shown in Equation
12. As shown in Fig. 3, although the magnitude estimation
is quite coarse, the final values are consistently in the basin



of attraction of a valid inverse Jacobian, so the optimization
is able to finetune the magnitudes to a valid estimate.

Y

mij,=|ﬁ\ m;j = mean(mij, ,...,m;j,) (12)
Jt

C. Final Optimization

After computing the signed and magnitude inverse Ja-
cobians, we combine them elementwise to form the initial
inverse Jacobian as in Equation 13. While J;* is near the
valid inverse Jacobian space, inaccuracies in the magnitude
estimation can introduce scaling errors causing control insta-
bility. Thus, we use Ji+ to initialize an optimization process
refining the estimate. The optimization objective is to find
the inverse Jacobian that best maps from observed changes
in V back to the actuator input €, as shown in Equation 14.
In experiments, @ and V are drawn from self-id movements
and the optimization uses SLSQP. As demonstrated in our
experiments, this optimized inverse Jacobian consistently
enables stable and precise control.

Algorithm 1 Inverse Jacobian Estimation Method

1: J;O =0

2: V=]

3 0= I

4: while |CONVERGED(J} , ) do > Sec. IV-D
5: 6; <+~ MAKERANDOMMOVEMENT

6: Xi—1 < SAMPLEPOMPOSE(-)

7 MOVEACTUATORS(8)

8: X < SAMPLEPOMPOSE(-)

9: V; < DIFFERENCE (X, Xr—1)

10 Ji + SIGNEDINVERSEJACOBIAN(6,V) > Sec. IV-A
11: Jp <~ MAGNITUDEINVERSEJACOBIAN(6,V) > Sec. IV-B
122 JF e JF ol > Sec. IV-C

13: J;:argminHéfJ;LVHZ
A

14: end while
15: return J}'

JF =argmin||0 —J V|, (14)
VA

Jr=Jfeul 3

D. Convergence Criteria

An important consideration in self-ID is determining when
sufficient data has been gathered to begin manipulation.
Since self-ID sampling delays manipulation, it is crucial to
select convergence criteria that minimize the identification
time while ensuring robust estimation. We define conver-
gence as the L2 norm of the difference between subsequent
estimates dropping below some € for two iterations: ||J," —
J,tl [l» <= €. At this point, the estimate stabilizes, additional
data has minimal impact, and it can be used for control.

V. RESULTS

We perform comprehensive real-world experiments to
evaluate our inverse Jacobian estimation system, focusing
on two key questions: 1. How does the removal of a priori
knowledge impact task performance; 2. Can our estimator
generalize across manipulators. We perform handwriting

Stewart
Hand

Model O

UR5e

(b)

Fig. 4: Experimental Setup; 4a: Manipulators for experiments.
POMs marked with AprilTag [27] controlled in camera frame; 4b:
Objects for WiHM experiments: From left to right, front to back:
Peg-in-Hole Box, Green Octagon, Yellow Pentagon, Blue Oval,
Yellow Parallelogram, Blue Star, Red Hexagon, Green Cube, Black
Triangle, White Cuboid, Yellow Pear, and White Triangle

experiments where the estimated inverse Jacobian traces a
path with the POM of an object to assess task performance.
These tests provide qualitative and quantitative evaluations of
control performance and are standard benchmark for manip-
ulation approaches with varying amounts of a priori system
information [28]. To evaluate manipulator generalization, we
evaluate our approach on WiHM with two passively adaptive
hands, the Yale Model O hand [3], a Yale Stewart hand [26],
and on serial manipulators using a UR5e arm.

Our experiment setup is shown in Fig. 4a. The POM of
each system is marked with an AprilTag and tracked using an
external camera. Throughout all experiments, the estimator
has no a priori knowledge of the system other than the stable
movement magnitude &;,; and number of actuators n. The
Yale Stewart Hand uses a single motor to pull three base
joints into the object to stabilize the grasp, and six linear
actuators controlled by the inverse Jacobian to manipulate
the grasped object. The Yale Model O hand is underactuated,
with each actuator controlling two finger joints without
finger joint sensing. So, the estimated inverse Jacobian must
directly map object pose changes to the motor movements.
The URSe arm is fully actuated with the inverse Jacobian
controlling all six actuators. For WiHM experiments, the
POM is a point on the grasped object manipulated using the
hand’s fingers while the POM on the URS5e is attached to the
end-effector. In all experiments, the system starts by making
random self-ID movements until the estimator converges,
at which point the inverse Jacobian is ready for control.
The range of systems with varied controllability, degrees
of freedom, and motor types shows that we estimate useful
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Fig. 5: Comparison of inverse Jacobian estimation methods

inverse Jacobians across manipulators.

The objects used for WiHM experiments are shown in Fig.
4b. We use a variety of objects shapes and sizes for testing,
the Black Triangle, White Cuboid, Yellow Pear, and White
Triangle measure approximately 50mm x 50mm x 75mm.
The remaining objects are approximately 40mm x 40mm x
40mm. The range of object shapes and sizes demonstrates
that our system generalizes to a variety of objects.

A. Estimation Method Ablation Study

We evaluate our inverse Jacobian estimation method
against three baselines on a 3D positional path tracking
task with a simulated URSe. First, we directly optimize the
inverse Jacobian from self-ID data. Second, we use the esti-
mated signed inverse Jacobian and true element magnitudes.
Finally, we compare control with the true inverse Jacobian.
We run self-ID for the selected number of iterations across
9 URS5e configurations, repeating each trial 10 times while
tracking a star-shaped path to find the mean path completion.

Our results in Fig. 5 show that finetuning the com-
bined sign-magnitude inverse Jacobian outperforms the other
baselines, particularly in the low-data regime. Our method
quickly finds a useful inverse Jacobian as the sign-magnitude
matrix is close to valid region. In contrast, directly optimiz-
ing an inverse Jacobian requires much more data to find a
useful estimation, at ~ 80 iterations our method performs
similar to direct optimization. We also find that the esti-
mated sign matrix inconsistently achieves control depending
on the arm configuration. A more capable sign estimation
framework would likely improve this performance. Overall,
these ablations validate the performance of the finetuned
sign-magnitude matrix.

B. Handwriting Control Tests

We analyze the precision manipulation capabilities of our
method on handwriting tasks using a Yale Model O hand
manipulating a variety of small and large objects. Each path
consists of position waypoints at the letter corners, which the
controller tracks with incremental steps. The visual results in
Fig. 6 show that the estimated inverse Jacobian performs
precise control of the object. The absolute error at each
control step is shown in Table I, confirming that our approach
maintains submillimeter control across all tasks.

Fig. 6: Model O writing “GRABLAB” using estimated inverse
Jacobian to manipulate Black Triangle, Blue Oval, Red Hexagon,
Blue Star, Green Square, Yellow Cylinder, and White Cuboid. Paths
shown in blue

Fig. 7: Stewart Hand estimated inverse Jacobian writing “E” with
White Triangle; 7.a: Nominal path completion; 7.b: Path completion
despite finger slip (in red), note that finger pads move to side grasp

To compare against previous WiHM controllers, we ana-
lyze the waypoint tracking error. The evaluations are com-
parable as the letter heights are all 12mm, and use the
Model O hand. Our method achieves a waypoint error of
0.41 £+ 0.16mm writing “GRABLAB”, converging in 5.7
4 1.0 self-ID iterations. The VLR particle filter [6] writing
“SCIENCE” had waypoint error 0.42 + 0.34mm converging
in 15.1 + 3.6 iterations. The inverse Jacobian particle filter
[13] writing “ICRA” had 0.45 + 0.24mm of error and
converged in 5.4 + 2.8 iterations. Despite removing a priori
system information, our approach achieves similar or better
performance in tracking error and estimation time. This
demonstrates that despite removing prior knowledge, we
retain effective control.

C. Stewart Hand Control Tests

We also analyze handwriting on the Yale Stewart Hand.
As shown in Fig. 7.a and Table I, the estimator successfully
estimates a valid inverse Jacobian for the hand-object system,

TABLE I: Experimental Absolute Position Error (mm)

\ Experiment [Mean X Error [Mean Y Error [Mean Z Error |
Model O G 0.37 £ 0.21 | 0.19 £ 0.13 | 0.38 + 0.12
Model O R 0.17 £ 0.17 | 0.17 £ 0.10 | 0.28 + 0.14
Model O A 0.24 + 0.14 | 0.11 £ 0.08 | 0.29 + 0.13
Model O B 0.11 £ 0.09 | 0.16 £ 0.11 | 0.21 + 0.11
Model O L 0.27 £ 0.16 | 0.18 £ 0.11 | 0.29 + 0.10
Model O A 0.31 £ 0.26 | 0.24 £ 0.19 | 0.29 + 0.16
Model O B 0.20 + 0.18 | 0.19 £ 0.12 | 0.30 + 0.14

Stewart Hand E 0.27 £0.27 | 0.25 £ 0.23 | 0.18 £+ 0.15
URS5e Cube Estimated | 1.41 + 1.31 | 1.18 £ 1.03 | 1.73 + 1.39
URS5e Cube Analytical| 0.35 £ 0.29 | 0.28 £ 0.22 | 0.93 &+ 0.85
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Fig. 8: Estimated inverse Jacobian vs. Analytical inverse Jacobian
6DOF pose regulation for Cube Trajectory. POM position controlled
via waypoints, POM rotation kept constant

TABLE II: Self-ID Rotation Error (deg)

\ Experiment [ Final Error|Control Step Error |
Green Octagon X Axis 0.37 0.56 £+ 0.39
Green Octagon Y Axis 0.74 0.57 £ 0.30

Yellow Parallelogram Y Axis 0.42 0.58 £ 0.26
URSe Cube Estimated 3.58 4.07 £ 195
URS5e Cube Analytical 2.28 2.82 £ 1.74

achieving a waypoint error of 0.28 £ 0.22mm converging in
10 iterations. This shows that our estimator enables precise
WiHM across different manipulators without modification.

During experiments with the Stewart Hand, we observed
an unexpected robustness to finger slip. Initially, the hand
held the object similar to Fig. 7.a, but after self-ID, the
fingers lost their grasp and began sliding along the object’s
surface. As shown in Fig. 7.b, the grasp reconfigured from
the fingerpad faces to their sides. Despite the reconfiguration
of the mechanism and object, once the grasp re-stabilized,
the estimator completed the path successfully. This highlights
that if the inverse Jacobian estimate remains within the
hand’s valid inverse Jacobian region, task performance can
be maintained under significant perturbation.

D. Rotation Tests

We evaluate rotation control using the estimated inverse
Jacobian. We test X and Y axis rotation with the Green
Octagon, and Y axis rotation with the Yellow parallelogram
using the Model O. Each experiment rotates the object 0.2
radians (11.5 deg) along the selected axis. We measure
the angular difference between the goal and actual POM
rotation at each control step and at the final rotation. As
detailed in Table II, rotation error remains consistently below
one degree, showing the precision of the inverse Jacobian
estimate. The method is also data-efficient, with convergence
in 5.0 £ 0.0 iterations. Like the position error results, we
observe low error rates across all experiments, demonstrating
that despite eliminating a priori knowledge from the system,
there is no compromise in task performance, further showing
the precision and robustness of our approach.

E. UR5e Pose Control

As the URSe has a known analytical inverse Jacobian, we
compare 6-DOF control with an estimated inverse Jacobian

TABLE III: Peg-in-hole Errors

[ Experiment [UR5e Pos (mm)|URS5e Rot (deg) [Model O Rot (deg)]
Blue Oval 1.28 + 0.66 041 £ 0.20 0.40
Blue Star 145 £ 0.71 0.20 £ 0.16 0.39
Green Octagon 1.54 £ 0.70 0.30 £+ 0.22 1.28
Red Hexagon 1.33 £ 0.72 0.26 £+ 0.16 0.80
Yellow Pentagon| 0.97 £ 0.61 0.10 £+ 0.07 0.41

to the analytical solution. We test tracing a 150 x 150 x
150mm Cube with the arm’s POM while maintaining a
constant POM orientation. The trajectories are shown in Fig.
8 and the quantitative error metrics shown in Tables I and II.
The estimator converged in § iterations. While the estimated
inverse Jacobian has a minor increase in error versus the
analytical solution, the absolute error is still low allowing
usability in the real-world. These results further validate that
our estimator enables precision manipulation.

F. Peg-in-hole Insertion Tests

To evaluate the real-world applicability of our approach,
we perform position-based peg-in-hole insertion tasks, a tight
tolerance test demonstrating high precision and accuracy
control. The experiments use a Model O hand mounted on
the URSe. The arm follows a predefined series of 6DOF
pose waypoints, maintaining constant X and Y rotation of
the manipulator. First, the inverse Jacobian of the arm is
estimated using self-ID and moves to the grasping waypoint,
grabbing the peg. The arm then moves to slightly above the
desired hole. Next, the hand runs self-ID on the grasped
object and rotates it to the perpendicular orientation. This
step is needed as the initial grasp induces an object rotation,
preventing insertion in the initial configuration. The arm then
moves the object to the hole and releases it.

We perform peg-in-hole insertions for five objects with ob-
jects and holes in different locations. An example experiment
using the Green Octagon is shown in Fig. 9. The quantitative
URS5e waypoint errors and final WiHM rotation errors are
detailed in Table III. The URSe estimator converged in 8.2
+ 0.4 iterations, while the Model O converged in 5.6 £+ 1.0
iterations. Compared to the 6DOF URS5e control experiments,
we observe a reduction in rotation error. This improvement
occurs because the arm operates in a smaller range with
higher manipulability, allowing the inverse Jacobian to main-
tain finer control capability. These results validate that our
estimated inverse Jacobian is sufficiently accurate to enable
real-world manipulation tasks with tight tolerances.

VI. CONCLUSION

We introduce the signed and magnitude inverse Jacobians
as an effective framework for interpreting self-ID data. By
separately estimating the principal motion directions and
movement magnitudes, we efficiently find useful inverse
Jacobians online. Using this approach, we present a novel
method for 3D precision Within Hand Manipulation and arm
control without a priori knowledge, generalizing across a
range of manipulators without manual intervention.

Although our results confirm task success within the valid
inverse Jacobian space, further work is needed to better



Fig. 9: Peg-in-hole insertion using estimated inverse Jacobians; a: Estimate arm inverse Jacobian (self-ID movements in green); b: Navigate
to grasp waypoint, grab object; c: Go to insertion waypoint; d: Estimate hand inverse Jacobian, rotate object to vertical; e: Insert peg

define its boundaries, as some inverse Jacobians outside the
valid region still enable control. Additionally, we plan to
refine the magnitude estimation with a Kalman Filter or
similar estimator to eliminate the need for fine-tuning the
final estimate. Finally, while our method uses no a priori
knowledge of the system or object, we rely on AprilTags for
pose tracking. We plan to investigate noisier learning-based
pose estimators to determine if they can enable precise ma-
nipulation without object modification. Additionally, object
tracking could be achieved with touch sensing, eliminating
the requirement for external cameras.
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