
Direct Self-Identification of Inverse Jacobians for Dexterous
Manipulation Through Particle Filtering

Joshua T. Grace1, Podshara Chanrungmaneekul2, Kaiyu Hang2, and Aaron M. Dollar1

Abstract— The ability to plan and control robotic in-hand
manipulation is challenged by several issues, including the
required amount of prior knowledge of the system and the
sophisticated physics that varies across different robot hands or
even grasp instances. One of the most direct models of in-hand
manipulation is the inverse Jacobian, which can directly map
from the desired in-hand object motions to the required hand
actuator controls. However, acquiring such inverse Jacobians
without complex hand-object system models is typically infeasi-
ble. We present a method for controlling in-hand manipulation
using inverse Jacobians that are self-identified by a particle
filter-based estimation scheme that leverages the ability of un-
deractuated hands to maintain a passively stable grasp during
self-identification movements. This method requires no a priori
knowledge of the specific hand-object system and learns the
system’s inverse Jacobian through small exploratory motions.
Our system approximates the underlying inverse Jacobian
closely, which can be used to perform manipulation tasks across
a range of objects successfully. With extensive experiments on
a Yale Model O hand, we show that the proposed system
can provide accurate in-hand manipulation of sub-millimeter
precision and that the inverse Jacobian-based controller can
support real-time manipulation control of up to 900Hz.

I. INTRODUCTION

Enabling robots to perform similar manipulation tasks to
human hands has been a continuing challenge in robotics.
Dexterous manipulation is defined as the capability to repo-
sition or reorient an object within a grasp [1] and is perhaps
more appropriately referred to as in-hand or within-hand ma-
nipulation. In-hand manipulation is a vital skill that humans
use for handwriting, placing objects, and unscrewing bottle
caps, making it a prerequisite for robots to interact with
objects designed for humans. A difficulty in dexterous, in-
hand manipulation is the variability in hand-object systems,
which refers to the system controlled by the actuators in
the fingers and linked through the grasp to an object. This
variation requires adapting the controller to the specific hand-
object system.

Manipulation of hand-object systems has been performed
using analytical system models. These approaches include
modeling the curvature at the contact point [2], the finger
contacts [3], the kinematic model of the hand [4], and the
model of the complete hand-object system [5]. While these
methods accurately represent specific hand-object systems,

1Department of Mechanical Engineering & Materials Science, Yale
University, New Haven, CT 06520 USA josh.grace@yale.edu;
aaron.dollar@yale.edu

2Department of Computer Science, Rice University, Houston, TX 77005,
USA. pc45@rice.edu; kaiyu.hang@rice.edu

This work was supported by the US National Science Foundation
grants FRR-2132823 and FRR-2133110 and funded in part by the Boston
Dynamics AI Institute.

Fig. 1: Overview of inverse Jacobian-based particle filter

they’re less applicable to general ones. Additionally, the
required model parameters are difficult to determine outside
simulation. Our approach requires no a priori knowledge of
the system and estimates the inverse Jacobian without an
explicit model of the system.

To overcome the reliance on accurate models to perform
manipulation, deep learning models have been applied to
learn in-hand manipulation [6]–[8]. These methods require
large datasets to be trained successfully, considerably in-
creasing offline computational requirements. Additionally,
learning-based methods usually don’t generalize well to
cases outside the training data. So, they’re challenging to use
in the real world. Our method uses a distribution determined
numerically using the set of possible joint locations of the
fingers. So, it can generalize to a wide range of objects
without reliance on specific object morphologies.

We consider manipulation using underactuated hands,
which are highly capable of grasping and manipulation as
their ability to passively adapt to grasped objects enables
them to maintain stable grasps over a large set of hand move-
ments [19]–[22]. However, the low number of controlled
degrees of freedom makes predicting task space movements
difficult. While these problems can be solved with extensive
sensing on the hand, we aim to enable manipulation with
limited sensing capabilities to avoid adding hardware re-
quirements. We leverage the stability of underactuated hands
to limit finger slip and use a single camera to track object
movements to adapt our controller to the hand-object system.

Several manipulation approaches have been demonstrated
for underactuated systems. In [9], [10], Jacobians are used to
simplify the complex motions of deformable objects. While



TABLE I: Comparison of relevant manipulation approaches

Manipulation Algorithm Manipulation Type Limitation A Priori Knowledge
Deformation Jacobian [9] Deformable Object Requires manipulator kinematic knowledge/ controller System kinematics
Diminishing Rigidity Jacobian [10] Deformable Object Requires manipulator kinematic knowledge/ controller System kinematics
Precision Manipulation Primitives [11] 2D Precision Needs hand specific manipulation primitives Manipulation Primitives
Learned State Transition Model [12] 2D Precision Intensive model training required for useful controller Dataset of state, input, and resulting move-

ment for model training
Non-Parametric Self-Identification [13] 2D Precision Only for 2D manipulation None
Object-Agnostic Manipulation Model [14] 3D Precision Intensive model training required for useful controller Dataset of movement, and resulting pose

changes for model training
Learned Control Mappings [15] 3D Precision Intensive model training required for useful controller Dataset of movement, and resulting pose

changes for model training
Jacobian-Based Deformation Control [16] 3D Manipulation Manual demonstrations of control target required None
VLR Particle Filter [17], [18] 3D Precision Needs processing intensive model of system Full hand model/ kinematics of hand
Inverse Jacobian Particle Filter 3D Precision Requires parameter distribution to initialize filter Characterization of inverse Jacobian pa-

rameters

they require full kinematic knowledge of the manipulator, our
approach, which does not, is analogous in using Jacobians
online to approximate complex manipulation systems. In
[11]–[13], planar manipulation with underactuated hands is
demonstrated. Our method performs 3D manipulation, which
is much more complex, requiring a more capable controller.
In [14], [15], 3D manipulation is performed on underactuated
hands using learned models. Creating these models requires
significant offline training, compared with our method, which
only requires a distribution of possible inverse Jacobian
parameters. In [16], 3D manipulation is performed with a
self-identified Jacobian using no a priori knowledge. Unlike
our method, it requires operator demonstration of tasks and
needs significant sensing on the fingers of the hand. Table I
summarizes these related manipulation approaches.

Our previous work [17], [18] is most similar to this ap-
proach. It used particle filters to estimate the hand-object sys-
tem parameters, including joint configurations, link lengths,
and spring stiffness, to build a model of the system referred
to as the virtual linkage-based representation (VLR). Like
this work, using self-identification (self-id), random system
inputs and their corresponding outputs are captured and used
to estimate the configuration parameters. We improve our
previous work by removing the dependence on a model.
We estimate the inverse Jacobian, the most direct method
of controlling the system, without modeling the underlying
system.

A precise system model is not always required to control
a robotic system, as long as a closed-loop control approach
is applied to the system, an approximate model is often
sufficient for achieving control of the system [23]. So, ap-
proximate Jacobians are often sufficient to control a system.
However, Jacobians can be highly non-linear, particularly
for underactuated hands where the space of valid Jacobians
is challenging to model analytically due to unpredictable
movements in task space. Thus, estimation systems for un-
deractuated hands must approximate the true system Jacobian
accounting for these challenges.

We present an approach that estimates a functional inverse
Jacobian using particle filters. The process hypothesizes
a range of potential inverse Jacobians, executes random
movements of the hand actuators, monitors the motion of
the target point on the grasped object, and resamples inverse
Jacobian particles that are a poor match for the hidden state,

iterating until the filter converges to an estimated inverse
Jacobian. As a result, we can control a hand-object system
without a priori knowledge of the system itself.

Our results show that avoiding a model makes our method
much more efficient than our previous approach, running at
74.9Hz compared with ∼ 0.1666Hz for the VLR particle
filter, as it doesn’t need heavy processing to use a model.
Furthermore, the new method can estimate a usable controller
with fewer self-id iterations, reducing the required filter
iterations from 15.1 to 5.4. These improvements are achieved
without a significant reduction in control accuracy.

II. PROBLEM FORMULATION

We consider the problem of manipulation using robotic
hands with limited finger slip. When the fingertips of the
hand grasp an object, the object’s pose becomes controllable
using the finger actuators. We’re particularly interested in
controlling a point on the manipulated object we call the
Point of Manipulation (POM), χ , which is rigidly attached
to the object and kinematically linked to the finger actuators
of the hand through contact points on the fingertips [17].

We perform manipulation using the Jacobian J(θ), which
linearizes the map from finger joint angle rates θ̇ to the
spatial twist V in SE(3) [23]. The Jacobian which maps to
the spatial twist Vf in frame f , J f (θ) is given by

Vf = J f (θ)θ̇ (1)
To transform the Jacobian reference frame from f to the
POM χ , the adjoint representation [AdT ] of the transform T
from frame f to χ is applied to J f (θ) to calculate Jχ(θ)

Vχ = [AdT ]J f (θ)θ̇ = Jχ(θ)θ̇ (2)
The inverse of this equation maps spatial twist to joint rates

θ̇ = Jχ(θ)
−1Vχ (3)

As the Jacobian isn’t guaranteed to be square, the inverse
Jacobian Jχ(θ)

−1 is computed with the Moore-Penrose Psue-
doinverse Jχ(θ)

+. Traditionally, Jχ(θ)
+ would be calculated

in a closed-form manner using the system kinematics and
a known transformation from f to χ to calculate Jχ(θ),
and inverting the matrix to obtain Jχ(θ)

+. But, we avoid
requiring finger joint sensing or prior information about
the manipulated object to ensure generalizability, so there
is insufficient knowledge of the system to compute the
inverse Jacobian directly. Thus, the inverse Jacobian at time
t, Jχ(θt)

+ = J+ must be approximated by Ĵ+.



Additionally, approximating the inverse Jacobian handles
the unpredictability of underactuated mechanisms. There are
infinite combinations of proximal and distal joint angles for
a motor configuration, and the precise configuration can’t be
known a priori. But, for a given grasp, the joints move to
minimize the energy in the system, which is repeatable and
enables the approximation of the underlying kinematics [24].

We develop a function Γ which estimates an inverse
Jacobian Ĵ+ given random samples x1,x2, . . . ,xn of the joint
rates and spatial twist.

Γ : (x1,x2, . . . ,xn) 7→ Ĵ+ (4)

Assuming the estimated inverse Jacobian Ĵ+ produced by
Γ approximates J+, we can then control the manipulation
system by predicting the required joint rates θ̇ for a desired
spatial twist Vs as in Equation (3).

III. ESTIMATING INVERSE JACOBIANS USING
PARTICLE FILTERS

A. Particle Filter

We use a particle filter to implement Γ in Equation
(4). Particle filters are a class of non-parametric filters
shown in [17], [18], [25] to successfully estimate hidden
states for hand-object systems. The filter creates a series
of hypothesized system states and tests how well each
hypothesis matches the true system, allowing it to handle
highly non-linear systems [26]. Particle filters do not need
a complete model of the underlying system, and instead
observe how well each particle’s output prediction matches
the true value. As particle filters can handle the challenge
of modeling underactuated systems and the non-linearity of
Jacobian spaces effectively, they are an attractive approach
for estimating inverse Jacobians for manipulation.

Algorithm 1 Inverse Jacobian Particle Filter
1: ρρρ ← GENERATEINITIALPARTICLES(distribution,N)
2: while !CONVERGED(ρρρ) do
3: χt−1← SAMPLEPOM(·)
4: ut ← GENERATERANDOMMOVEMENTS(·)
5: MOVEHAND(ut)
6: χt ← SAMPLEPOM(·)
7: upred ← PREDICT(ρρρ,χt−1,χt)
8: w← NORMALIZE(COMPUTEWEIGHT(ρρρ,upred ,ut))
9: ρρρ ← RESAMPLE(ρρρ,w)

10: end while
11: return AVG(ρρρ,w)

The filter uses range of N particles, ρρρ t = [ρ1
t ,ρ

2
t , ...,ρ

N
t ],

which represent the possible system parameters. The proba-
bility associated with a given particle ρ i

t is computed via
ρ

i
t ∼ p(ρt |z1:t ,u1:t) (5)

where u1:t are the self-id inputs, and z1:t are the observed
change in POM pose for those inputs [17]. Assuming that the
space of inverse Jacobians is sampled accurately by ρρρ , then
Equation (5) should represent the underlying distribution of

inverse Jacobians. Unfortunately, this rarely occurs in prac-
tice, and the particle filter instead uses a proposal distribution
π to iteratively approximate the distribution with

π(ρρρ t)∼ p(ρρρ t |ρt−1,ut)π(ρρρ t−1) (6)

If the particles ρρρ are sampled from π , using importance
sampling, π and p are related by∫

JJJ+
p(ρρρ t)dρρρ t =

1

∑
N
i=1 wi

t

N

∑
i=1

I(ρ i
t ∈ JJJ+)wi

t , ρ
i
t ∈ ρρρ t (7)

wi
t = exp(−∥ut −ρ i

t χ∆∥
2σ2 ) (8)

where JJJ+ is the space of valid inverse Jacobians for the
system, wi

t is the weight of ρ i
t computed in Equation (8)

using a Gaussian radial bias function [27]. Weights are
based on the similarity of the movement predicted by ρ i

t
for the observed change in POM pose change χ∆ to the
true movement ut . The summation is normalized by the sum
of the weights to account for differences between π and
p to ensure the weighted ρρρ t approximates the probability.
Particles are then resampled according to their weights using
stratified resampling as described in [26]. Each resampled
particle is moved by a random amount along each of its
parameter axes using the weighted standard deviation of the
particles. This is implemented in lines 7-9 of Algorithm
1. The process is repeated until the particles in the filter
converge to an estimated inverse Jacobian Ĵ+, determined
by the norm of the element-wise standard deviation of the
particles

∥σ(ρk[i, j])∥< ε ∀k ∈ [t−2, t−1, t] (9)
where σ computes the standard deviation and ρk[i, j] is the
i, j element of the particles at time k. Equation (9) ensures
that the particles have remained close together for three filter
iterations. When this occurs, the particles have a similar
hypothesis for the inverse Jacobian of the system, and there is
limited improvement from continuing to run the filter. So, the
filter has completed and returns the weighted average of the
particles as described in Algorithm 1. The estimated inverse
Jacobian can be used to control the hand-object system using
Algorithm 2.

Algorithm 2 Manipulation Using Inverse Jacobian
1: for all χt+1 ∈ waypoints do
2: while NORM(χt+1−SAMPLEPOM(·))> ε do
3: χt ← SAMPLEPOM(·)
4: χ∆← χt+1−χt
5: ut ← Ĵ+ ∗χ∆

6: MOVEHAND(ut)
7: end while
8: end for

B. Estimating Inverse Jacobians

The particle filter is used to estimate an inverse Jacobian
Ĵ+, approximating the true inverse Jacobian J+ of the
system. At the start of the filter, the range of possible inverse
Jacobians is sampled. During the initialization phase of the
filter, each actuator of the system is moved a random amount



ut , which moves the POM, giving the particle filter insight
into the system. The POM pose χt−1 is sampled before,
and χt is sampled after the movement of the fingers to find
χ∆. This is achieved by subtracting the position component
of χt−1 from χt in Cartesian space to find the difference
in position and multiplying the quaternion of χt−1 by the
conjugate of the quaternion of χt to find rotational change.

As shown by [28], Jacobians can be used for control in
discrete time. To use Ĵ+ in discrete time, we treat the joint
rates and spatial twist in Equation (3) as the change in motor
position and change in POM pose, χ∆, between control steps
to produce the equation used for POM control.

ut = Ĵ+χ∆ (10)
At each step, we compute the required control input ut for
χ∆ using Ĵ+. Calculations using Jacobians are implemented
with efficient linear algebra techniques, so using Jacobians
ensures that the filter runs at high frequencies.

Jacobian matrices for the hand-object systems tested in
this paper were frequently ill-conditioned. So, estimating a
Jacobian matrix and then inverting it would produce vastly
different inverse Jacobians, which may be unusable for
manipulation. Accordingly, we estimate the inverse Jacobian
directly to ensure stability.

C. Generating Inverse Jacobian Distribution

To ensure that the initialization of the particle filter cap-
tures the possible inverse Jacobian parameters for the hand,
a distribution of the feasible inverse Jacobian parameters
is computed offline. This information is captured once per
hand design, as it is dependent only on the kinematic
parameters of the hand. So, once the offline distribution is
computed for a given hand, it captures the possible hand-
object configurations for the hand. The filter requires no
modifications to control different objects.

We simulated the hand using a simulator shown in [24]
to accurately simulate the movements of a physical Model
O hand. For each joint on the hand’s fingers, an angle θ

is uniformly sampled from the possible angles for the joint,
and a POM position χ is uniformly sampled within the view
frame of the in-palm camera. The simulation keeps the initial
distances between the fingertips constant during simulation.
This process effectively generates a hand-object system by
randomizing the POM pose and fingertip positions.

As visualized in Fig. 2, each simulated finger actuator on
the hand is moved forward and backward by 0.00025 radians.
Next, the partial derivative of the POM pose change from
each finger actuator movement is computed using δ f inger =
(χt−χt−1)

ut
and treated as the actuator’s column in the Jacobian.

Once the Jacobian columns have been calculated for each
actuator, the pseudoinverse of the Jacobian is calculated and
added to the distribution. This process is repeated 500,000
times to generate a representative distribution.

The mean and standard deviation of each inverse Jacobian
parameter are computed and saved for sampling during the
initialization phase of the particle filter. When sampling
inverse Jacobians in the particle filter, each parameter is sam-
pled independently and added to a candidate particle. This

Fig. 2: Sampling method for Jacobian columns. Finger actuation ut
is determined randomly for each finger. Change in the POM pose
χ∆ before and after finger movement is divided by the actuation
amount to determine the partial derivative of POM movement

ensures that grasps not directly sampled in the simulation but
close to other configurations in the inverse Jacobian space
can still be sampled in the particle distribution.

IV. RESULTS

We implement our method on a Yale Model O hand, a
three-finger passively adaptive underactuated hand [21]. Each
finger has a single actuator driving two encoderless joints.
It also uses a 4th actuator to control the abduction angle
between the left and right finger, which is set to 45° to
maximize the grasping ability of the hand. The hand has a
Logitech C920 RGB Camera in the palm to track the POM.
The setup is shown in Fig. 3a. A range of object shapes and
sizes were used to demonstrate the filter’s ability to handle a
variety of contact locations and POM positions. Each object’s
POM is marked with an AprilTag [29] for tracking during
experiments. The objects are shown in Fig. 3b.

All code was implemented in Python and uses ROS [30].
The particle filter was run with 10,000 particles sampled
from the same precomputed distribution of inverse Jacobians.
The filter begins by estimating an inverse Jacobian, as shown
in Algorithm 1. An ε of 9× 10−15 for three consecutive
iterations was found experimentally to be an effective con-
vergence threshold. As described in Algorithm 2, the system
then navigates between waypoints representing the desired
path the POM should move through to perform POM-based
manipulation. To move the POM from its current position to
the desired waypoint, the required movement of each actuator
is calculated using Equation (10). This process is repeated
until the norm of the error between the POM and waypoint
positions is less than 1mm.

Writing experiments were performed across a range of
object shapes, sizes, and POM locations to demonstrate that
the inverse Jacobian particle filter can successfully self-



(a)

(b)

Fig. 3: Physical Experiment Setup; 3a: System used for experi-
ments. The hand is a Yale Model O hand, which has been modified
with a camera in the palm that tracks the POM on the object being
manipulated; 3b Objects used in experiments: From left to right,
front to back: Green Cube, Blue Oval, Red Hexagon, Brush, Yellow
Cylinder, White Cuboid, Yellow Pear, and Blue Prism

identify and control hand-object systems. These experiments
show that our method generalizes to a range of possible
hand-object configurations and is robust to real-world noise.
Additionally, as both the runtime and convergence time of the
filter impact how the system can be used in the real-world,
they are also evaluated.

A. Particle Filter Convergence

Ensuring the number of iterations required for the particle
filter to converge remains low is vital. The self-id process
adds time to manipulation tasks because each iteration re-
quires an exploratory motion and should be minimized. All
future metrics are reported as mean ± standard deviation.
The inverse Jacobian particle filter converged in 5.43 ± 2.77
iterations during experiments. The particle filter presented in
[18] requires 15.1 ± 3.6 iterations to converge to a useful
model. So, the method introduced here requires significantly
fewer exploratory motions than our previous approaches,
demonstrating one of the critical advantages of our model-
free method.

B. Writing Test

A series of handwriting tasks were performed to evaluate
the system. Both the visual path and quantitative error
between the goal and actual POM position were analyzed
to demonstrate the inverse Jacobian performing manipulation
tasks. The writing test figures show that the inverse Jacobian

Fig. 4: “ICRA” written using estimated inverse Jacobian with (from
left to right) the Yellow Cylinder, Blue Oval, Red Hexagon, and
White Cuboid

can move the POM through a trajectory accurately enough
to match the goal path visually. The green path is the actual
path the POM traveled through during the experiment, while
the red path (when present) is the goal path.

Fig. 4 shows the estimated inverse Jacobian used to write
“ICRA” using four different objects. The “A” and “I” were
written by larger objects. The white cuboid was 50 x 38
x 75mm tall. The yellow cylinder was 50 x 50 x 77mm.
The “C” and “R” were written by smaller objects. The blue
oval was 32 x 45 x 40mm. The red hexagon was 37 x 42
x 40mm. These objects demonstrate that the particle filter
can successfully manipulate various object shapes, sizes, and
grasp contact points.

Fig. 5 shows the estimated inverse Jacobian used to
manipulate several objects to draw different shapes. Fig. 5a
and 5b use the same object to draw the same path with
different sizes. The path shown in Fig. 5a is 5.4 x 5.2mm,
while the path in Fig. 5b is 12.1 x 12.4mm. These paths
demonstrate large and small-scale movement control. Fig.
5c shows control of a POM away from the object’s center.
The pear shape used in this experiment is 60 x 38mm wide.
The center of the AprilTag is 17mm from the center of the
pear on the long axis. This experiment shows control of a
POM outside the object’s center. Fig. 5d demonstrates the
manipulation of a brush with a complicated design, showing
the system’s application to real-world objects.

These experiments show that the system can accurately
control the POM to follow a goal path visually. This shows
that the estimated inverse Jacobian is close enough to the
true system Jacobian for manipulation tasks across various
objects and POMs.

C. Writing Test Stepwise Error

The position error of the writing experiments was evalu-
ated at each step to give a quantitative measure of 3D accu-
racy across the whole path. For each experiment, the absolute
difference between the goal position and the position of the
POM was evaluated at every control step. Errors were cal-
culated for the x, y, and z positions. The mean and standard
deviation of the errors in each axis were computed between
the actual and goal paths in each experiment. The errors
of the writing experiments are included in Table II. These
sub-millimeter error metrics show that the estimated inverse
Jacobians are close enough to the true inverse Jacobians to
control the system accurately.



(a) (b) (c) (d)

Fig. 5: Shape writing experiments, POM path in green, goal path in red; 5a: Small heart (5.4 x 5.2mm) drawn with Blue Prism; 5b: Large
heart (12.1 x 12.4mm) with Blue Prism; 5c: Star drawn by off-center POM with yellow pear; 5d: Brush manipulated in brushing pattern.

TABLE II: Experimental position error

Experiment X Position Error Y Position Error Z Position Error

I 0.773 ± 0.406 0.272 ± 0.192 0.255 ± 0.115
C 0.357 ± 0.243 0.098 ± 0.084 0.271 ± 0.176
R 0.358 ± 0.238 0.397 ± 0.253 0.325 ± 0.239
A 0.511 ± 0.27 0.207 ± 0.13 0.242 ± 0.108

Big Heart 0.515 ± 0.343 0.341 ± 0.189 0.215 ± 0.121
Small Heart 0.314 ± 0.19 0.212 ± 0.192 0.174 ± 0.099

Star 0.787 ± 0.454 0.3 ± 0.19 0.199 ± 0.116
Brush 0.456 ± 0.285 0.771 ± 0.258 0.23 ± 0.175

D. Writing Test Waypoint Error

Additionally, the waypoint errors in Fig. 4 were evalu-
ated to compare against the previous particle filter-based
approach. This evaluates errors at the end of a path segment
instead of at each control step, as was done in Section IV-C.
Errors were calculated for the x, y, and z translation errors,
and the L2 norm of these errors was computed at each way-
point. The error of all waypoints in the “ICRA” experiment
was 0.453 ± 0.242mm. The handwriting experiment in [18]
writing “SCIENCE” with the same path sizes was 0.42 ±
0.34mm. The minor difference in error shows that removing
the model doesn’t significantly reduce accuracy.

E. Processing Frequency

A significant advantage of this method is the use of
efficient linear algebra techniques, enabling fast runtimes.
Two filter variations were evaluated for their frequency, one
implemented only on the CPU and another with all possible
computations run on the GPU. Experiments were performed
on a Desktop with an Intel 11700 and NVIDIA 3060. Motor
movements and POM pose changes were precalculated in
simulation to characterize the filter frequency. Runtime was
evaluated from before initial particles were generated until
the filter completed 10,000 iterations. The number of filter
iterations was divided by the total runtime to calculate the
frequency. This process was repeated 20 times, and the filter
frequency was averaged to ensure representative statistics.

As shown in Table III, the filter reaches 74.92 ± 2.76Hz
on the CPU. On the GPU, the filter reaches 932.64 ± 8.43Hz.
The particle filter presented in [18] requires 6 seconds
per filter iteration (∼0.1666 Hz) when run on an AMD
Ryzen Threadripper 1950X with 32 threads. The most direct
comparison is the CPU version of the filter, which takes
0.0133 seconds per filter iteration. The model-free method

presented here runs considerably faster than the VLR particle
filter. The filter runs quickly enough that systems can update
their controller in real time without significantly impact-
ing their control frequency. This is especially important in
manipulation, where the inverse Jacobian may vary during
tasks, requiring updated estimation. These situations require
updating the inverse Jacobian in real time. So, the particle
filter’s fast run time is essential in these cases.

TABLE III: Particle filter frequencies

Filter type Frequency (Hz)

Inverse Jacobian CPU 74.92 ± 2.76
Inverse Jacobian GPU 932.64 ± 8.43

VLR Particle Filter CPU [17], [18] ∼0.1666

V. CONCLUSION

We present a method to perform model-free in-hand
manipulation using inverse Jacobians estimated with particle
filters. By precomputing a distribution of inverse Jacobians,
this method can efficiently represent the space of hand-
object systems, which can be sampled to estimate the inverse
Jacobian online. This is advantageous as it only requires a
simulation of the hand system and no a priori knowledge
of the object being manipulated. The estimation requires
only a single in-palm camera, reducing sensing requirements
compared to traditional in-hand manipulation systems. This
method can also run at high frequencies, which allows it to
quickly update itself if the underlying system changes during
manipulation. The particle filter was evaluated in various
handwriting tests with different object shapes, sizes, and
POM locations, validating the system’s adaptability.

In the future, we will evaluate different filter types to
remove the requirement for a precomputed distribution of
possible inverse Jacobians. Furthermore, we will evaluate the
method on three-finger hands with varying finger lengths and
contact locations. Additionally, we will apply the system to
hands with different numbers of fingers to extend the method
past the Model O hand that experiments were performed on.
We also want to demonstrate this system on cameras outside
the palm by estimating the transform applied to the inverse
Jacobian. This would allow the system to perform a broader
range of tasks that require tracking with external cameras.

VI. ACKNOWLEDGEMENTS

We thank Vatsal V. Patel for his insightful discussions.



REFERENCES

[1] A. Bicchi, “Hands for dexterous manipulation and robust grasping: A
difficult road toward simplicity,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 6, pp. 652–662, 2000.

[2] D. J. Montana, “Contact stability for two-fingered grasps,” IEEE
Transactions on Robotics and Automation, vol. 8, no. 4, pp. 421–430,
1992.

[3] J. C. Trinkle, J.-S. Pang, S. Sudarsky, and G. Lo, “On dynamic multi-
rigid-body contact problems with coulomb friction,” ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik, vol. 77, no. 4, pp. 267–279, 1997.

[4] T. Okada, “Computer control of multijointed finger system for precise
object-handling,” IEEE Transactions on Systems, Man, and Cybernet-
ics, vol. 12, no. 3, pp. 289–299, 1982.

[5] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical
introduction to robotic manipulation. CRC press, 1994.

[6] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[7] J. Bütepage, S. Cruciani, M. Kokic, M. Welle, and D. Kragic, “From
visual understanding to complex object manipulation,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 2, pp. 161–179,
2019.

[8] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[9] D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero, and P. Li, “Model-
free visually servoed deformation control of elastic objects by robot
manipulators,” IEEE Transactions on Robotics, vol. 29, no. 6, pp.
1457–1468, 2013.

[10] D. Berenson, “Manipulation of deformable objects without modeling
and simulating deformation,” in 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2013, pp.
4525–4532.

[11] B. Calli and A. M. Dollar, “Vision-based precision manipulation with
underactuated hands: Simple and effective solutions for dexterity,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 1012–1018.

[12] A. Sintov, A. S. Morgan, A. Kimmel, A. M. Dollar, K. E. Bekris, and
A. Boularias, “Learning a state transition model of an underactuated
adaptive hand,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1287–1294, 2019.

[13] P. Chanrungmaneekul, K. Ren, J. Grace, K. Hang, and A. M. Dollar,
“Non-parametric self-identification and model predictive control of
dexterous in-hand manipulation,” 2023, accepted.

[14] A. S. Morgan, K. Hang, and A. M. Dollar, “Object-agnostic dexterous
manipulation of partially constrained trajectories,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5494–5501, 2020.

[15] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and
K. Bekris, “Vision-driven compliant manipulation for reliable, high-
precision assembly tasks,” arXiv preprint arXiv:2106.14070, 2021.

[16] A. Sieler and O. Brock, “Dexterous soft hands linearize feedback-
control for in-hand manipulation,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023,
pp. 8757–8764.

[17] K. Hang, W. G. Bircher, A. S. Morgan, and A. M. Dollar, “Hand–
object configuration estimation using particle filters for dexterous in-
hand manipulation,” The International Journal of Robotics Research,
vol. 39, no. 14, pp. 1760–1774, 2020.

[18] ——, “Manipulation for self-identification, and self-identification for
better manipulation,” Science Robotics, vol. 6, no. 54, p. eabe1321,
2021.

[19] A. M. Dollar and R. D. Howe, “The highly adaptive sdm hand: Design
and performance evaluation,” The International Journal of Robotics
Research, vol. 29, no. 5, pp. 585–597, 2010.

[20] L. U. Odhner, R. R. Ma, and A. M. Dollar, “Open-loop precision
grasping with underactuated hands inspired by a human manipulation
strategy,” IEEE Transactions on Automation Science and Engineering,
vol. 10, no. 3, pp. 625–633, 2013.

[21] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R.
Ma, M. Buehler, R. Kohout, R. D. Howe, and A. M. Dollar, “A com-
pliant, underactuated hand for robust manipulation,” The International
Journal of Robotics Research, vol. 33, no. 5, pp. 736–752, 2014.

[22] V. V. Patel, D. Rakita, and A. M. Dollar, “An analysis of unified
manipulation with robot arms and dexterous hands via optimization-
based motion synthesis,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 8090–8096.

[23] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University
Press, 2017.

[24] A. S. Morgan, K. Hang, W. G. Bircher, and A. M. Dollar, “A data-
driven framework for learning dexterous manipulation of unknown
objects,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 8273–8280.

[25] C. Corcoran and R. Platt, “A measurement model for tracking hand-
object state during dexterous manipulation,” in 2010 IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 2010, pp.
4302–4308.

[26] R. Labbe, “Kalman and bayesian filters in python,” Chap, vol. 7, no.
246, p. 4, 2014.

[27] A. Banerjee and P. Burlina, “Efficient particle filtering via sparse
kernel density estimation,” IEEE Transactions on Image Processing,
vol. 19, no. 9, pp. 2480–2490, 2010.

[28] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true jacobian,” in 1994 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 1, 1994, pp. 186–193
vol.1.

[29] E. Olson, “Apriltag: A robust and flexible visual fiducial system,”
in 2011 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2011, pp. 3400–3407.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.


